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1. Introduction.   
The origins of linguistics lie mainly in the humanities, but humanistic disciplines have 
traditionally been little concerned with quantitative analysis.  Consequently, naïve 
observers, and even many linguists, may wonder about the place of numbers in a 
discipline focused on words.  The importance of statistics for linguistic research emerges 
most clearly when one investigates questions that lack categorical answers.   
 
Much of linguistic theory, at least since the Neogrammarians and their exceptionless 
sound laws, has focused on the categorical: the generalization that admits no exception.  
When properties of language are categorical, no quantitative analysis is necessary.  Thus 
English speakers do not require statistical studies of English NPs to be convinced that 
articles never follow nouns.  A phrase like the dog is grammatical, while the alternative 
*dog the is not, and never occurs, and this generalization is so comprehensive that 
English speakers would likely find it silly to count up instances to confirm it.   
 
However, there are many interesting facts about language that involve relative, not 
absolute, properties – that involve relations of more and less rather than relations of 
either/or.  Such properties are necessarily described in quantitative terms.  In some 
approaches, quantification is only implicit: thus optimality theory sees some constraints 
as more determinative than others, but the only quantification that OT admits is an 
ordinal scale of constraint ranking.  Other approaches adopt explicit quantification; one 
of these is variation theory in sociolinguistics, which was developed to describe and 
model quantitative patterns in everyday language use.  
 
In their everyday lives, speakers systematically adapt their pronunciation, grammar, 
lexicon, and discourse strategies to address different hearers or to serve different 
communicative ends.  Also, individual speakers and groups defined by social 
characteristics and practices, differ systematically in usage.  To adequately characterize 
this rich patterning of speakers' sociolinguistic knowledge requires statements of more 
and less: older speakers use an innovative form less than younger speakers, upper class 
speakers use more of a prestige variant than working class speakers; everyone in a 
community typically uses more prestige variants in their more careful speech styles.   
 
Consequently, if linguistics is going to faithfully and adequately describe and model the 
social and psychological processes that give rise to any of these systematic, but non-
categorical alternations in language, it must adopt a quantitative apparatus.  Since we are 
not the first discipline to do this, it behooves us to study the prior discoveries in this area 
of other disciplines, principally mathematics and statistics.  This chapter will seek to 
provide the basic elements of such a study, an introductory lesson that we might call 
'numbers for wordsmiths'.  
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2. Quantitative approaches to generalization 
 
Perhaps the most essential strategy of linguistic analysis is generalizing: attempting to 
move beyond individual cases to formulate a general rule, principle, or pattern.  This is, 
of course, a strategy that is basic to human intelligence.  There is even an English 
aphorism describing failures of generalization: 'he can't see the forest for the trees'.  In 
quantitative analysis, many of the basic methods could be characterized as quantitative 
generalizations, techniques for perceiving the shape of the forest through all the trees.  
Let us briefly consider some of these: the calculation of percentages and ratios, the 
definition of variables, and measurements of central tendencies. 
 
2.1 Ratios. Consider the following data from a study of relative clauses in Australian 
English, comparing two speakers from different social class backgrounds.  There is of 
course a three-way variation in relativizing strategies in English: relative clauses can be 
introduced with a wh- word, that, or zero: Here's the book {which, that, ø} I mentioned).  
In this study, the working class speaker was found to use 2 tokens of a wh- relative (i.e. 
who) in subject position with a [+human] antecedent, while the middle class speaker used 
49 tokens in the same context.  If we assumed for the moment that these speakers are 
representative of their social classes, would it be reasonable to hypothesize that middle 
class speakers use wh- forms more often than working class speakers?   
 
The difference between the two figures – 2 vs. 49 – is substantial, so the unreflecting 
impulse might be to answer yes, but based only on this information, the thoughtful 
answer should be a thundering NO!  What we have so far is only a fragment of the 
information necessary for inferring a pattern.  To conclude that the MC speaker uses 
more wh- forms based on this information would be like going out to look at trees, 
reporting that you saw five oaks, and then concluding that you had found an oak forest.  
Such inferences are only valid, or even possible, if we have more information about the 
technique that produced these numbers: in the forest case, how many trees did you look at 
and what other kinds did you find?  Did you find nothing but oaks, or did you walk past 
hundreds of maples in order to find your quintet of oaks?  To make a reasonable 
generalization requires knowing all of the relevant observations, not just a selectively 
reported subset.  In the relative clause study, some crucial additional information would 
be, for example, how many opportunities did each person have to produce wh- forms, and 
what other types of relativizers were used? 
 
A crude measure of opportunities would be observation time: for how many minutes or 
hours of speech was each subject observed or recorded.  If you recorded the working 
class speaker for 10 minutes, and while the other speaker was recorded for 20 hours over 
a period of several days, then these data might lead us to the opposite conclusion.  What 
we need, in short, to formulate hypotheses or to see the makeup of the forest, is 
information on data quantity, and the ratio of the various kinds of observations.  A 
hypothesis will be more credible when it is based on more data, and it will go in the 
direction suggested by the ratio, rather than the raw counts of samples of different sizes. 
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In the study at hand, it happens that the MC speaker was actually recorded for 50% more 
time than the WC speaker: 3h45m as opposed to 2h30m.  But this is a crude measure of 
opportunities to produce a given relativizer; if one speaker was talkative and the other 
taciturn, the number of relative clauses each produced might be expected to differ 
dramatically even if they were recorded for the same amount of time.  Hence the most 
straightforward approach to formulating an estimate of the speakers' relative usage of wh- 
forms is to count up all their relative clauses and look at the ratio of wh- to that forms, or 
the percentage of wh- as a fraction of all relative clauses, or some similar measure.  
 
For the relative pronoun study, we can provide the missing information as follows: in 
addition to the wh- forms, the middle class speaker produced 33 cases of the relativizer 
that, while the working class speaker produced 9 such cases.  (Note that we are still 
restricting our attention to human antecedents and subject-position relatives; hence there 
were no cases of Ø relativizers.)  The data can now be summarized as follows: 
 
      MC speaker      WC speaker 
 
 who  49      2 
 that  33     9 
 
 % wh-  60%   22% 
 
Given this information, we now know the total number of relative clauses observed (in 
the specified context), and we can now compare the ratios of usage of wh- as opposed to 
other alternatives. The crucial statistic for present purposes is the percentage of use of 
wh- forms, and we can now make a meaningful statement that indeed these two speakers 
do differ in wh- usage, at least in subject position with human antecedents.  The MC 
speaker uses wh- forms more often in this context, but we say this not because he used a 
total of 49 of them, but rather because 60% of his relative clauses were introduced by wh- 
forms, as opposed to the 22% usage of the WC speaker.  It is the fractions we are 
comparing, not the numerators of these fractions.  Had we found 450 cases of that for the 
MC speaker, he would have been using wh- forms only 10% of the time, and we would 
come to the opposite conclusion. 
 
Now, what about generalizing further, beyond the context in which these data were 
observed.  Based on these data, limited to human antecedents and subject relatives, can 
we justifiably infer that the MC speaker generally uses more wh- forms?  Whether or not 
such reasoning is valid depends on the context of observation and how representative it 
is, or is thought to be, of the total range of possible contexts.  In this case, given what is 
known about English relatives, the selected context is arguably quite unrepresentative, so 
that a broader generalization based just on this data is unjustified.  In the first place, 
subject relatives often disallow the zero relativizer, so the cited context eliminates one of 
the three alternatives of this variable.1  In addition, there is a high level of linguistic 
insecurity among many English speakers regarding the case-marking of the relative 
pronoun who/whom.  This case marking is prescriptively favored in standard English, but 
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it is absent from the productive grammar of most modern English speakers, and is of 
course absent from all other possible relativizers in English (there is no case marking of 
that, which, when, where, why, or Ø).  Consequently, some speakers appear to adopt an 
avoidance strategy to escape the necessity of figuring out whether who or whom is the 
prescriptively appropriate form: instead, they use that or Ø forms with human 
antecedents.      
      
Therefore, before generalizing about these speakers based on the data I have presented so 
far, it would be wiser to examine their usage in other contexts that allow a full range of 
variants and are not muddied by linguistic insecurity.  Consider for example the 
following data on their usage in object relatives with non-human antecedents: 
 
      MC speaker      WC speaker 
 
 which    9      5 
 that  20     6 
 Ø  27   12 
 
 % wh-  16%   22% 
 
In this context, the WC speaker actually uses a higher percentage of wh- forms than the 
MC speaker, reversing what was found in the previous context.  Across all contexts other 
than the subject relatives with human antecedents, the total figures were 36% wh- forms 
for the MC speaker, and 33% for the WC speaker – nearly identical.  Hence overall there 
is no evidence for a systematic difference in rate of wh- use between these two speakers, 
which shows the importance of evaluating the contexts from which data are drawn before 
making generalizations.   
 
2.2. The definition of variables. The above example also serves to illustrate some 
additional points about working with variables: the kind of relationship that is assumed to 
obtain between the variables under consideration, and how they are defined on a 
quantitative-qualitative axis.  The first of these is often theoretically illuminating.  In the 
relative pronoun example we were investigating an association between two different 
dimensions: a linguistic dimension (the use of relativizers) and a social dimension 
(speaker's social class).  Each of these may be treated as a variable, in the mathematical 
sense.  This in itself is a preliminary generalization.  The various relativizers are treated 
as constituting alternative ways of fulfilling the same syntactic function, and the speakers 
in the study are treated as instantiating alternative values of an attribute (social class), that 
all speakers in this society are presumed to possess.  Hence MC and WC are possible 
values of the variable 'class' and which, that, and Ø are possible values of the variable 
'relativizer'.   
 
In this example, we also have a clear sense that these two variables have a different status 
in our understanding of how the world works.  Most commonly, sociolinguists think of 
the rate of use of the linguistic feature as somehow caused, influenced, or determined by 
the social feature.  Applying the terminology used in statistics for such a distinction, we 
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would call the choice of relativizer a "dependent variable", while the speaker's social 
class would be considered an "independent variable".  Such terminology implies a 
dependency or even causal relationship between the two dimensions.  In the example at 
hand, this would be justified on the basis of an expectation that a speaker's momentary 
decision to use or not use a wh- relativizer could not influence their social standing on a 
class scale which is ordinarily seen as a function of more durable social traits like 
educational and occupational level.  A Ph.D. who utters "ain't" on some occasion does 
not thereby lose their post-graduate educational history.  The same would be true of other 
social dimensions: sex and race are normally permanent characteristics of a person's 
identity, and should therefore be independent of their momentary linguistic choices.  
Rather, it should be the linguistic choices that are determined (or perhaps restricted) by 
the speaker's social identity and prior linguistic experience.   
 
However, the terminology of dependent and independent variables should not make us 
lose sight of the fact that this distinction is highly conceptual, deriving, in effect, from 
some 'theory' of the world.  Adopting a different point of view may shift the relationship 
between a given pair of variables.  Thus if we construe social identity as a construct 
based on an individual's performance of certain practices, including linguistic practices, 
then we might talk about the use of prestige linguistic variants as an independent variable 
that speakers use when they are seeking to construct an identity as an educated, middle 
class, person.  Gender identities – masculinity and femininity – as well as ethnic 
identities, and social relationships like boss, teacher, friend, etc. are all at least partially 
constructed through linguistic practice, such that making certain linguistic choices 
contributes to the establishment and maintenance of the social identity.  From this 
perspective, one might reasonably construe the linguistic variables as independent, and 
the social identities as dependent.   
 
The same trade-off between dependent and independent can be encountered within the 
domain of the linguistic variables, insofar as they are interconnected.  In vernacular 
Brazilian Portuguese, for example, verbs rarely agree with post-posed subjects; what is 
the direction of dependency?  Research on this topic has most commonly assumed that 
the word order is prior, and the agreement is dependent, but it could be conceptualized as 
the other way around: perhaps agreement blocks postposition of the subject.  Or perhaps 
both agreement and word order are triggered by something else: raising of a subject 
across the verb or AGR position.  The general point here is that what is dependent and 
what is independent is not given by statistical methods, but by one's prior assumptions or 
theories.  It is sometimes illuminating to test those assumptions by exploring alternative 
possible dependency relations between the variables under investigation. 
 
The second point to note about variables is their place in a typology of quantitative vs. 
qualitative, continuous vs. discrete.  This characterization affects the kinds of statistics 
that can be utilized in one's analysis.  In the case of English relativizers, the linguistic 
variable has three possible realizations, but each is discretely different from the others: 
they do not form a continuum, and there are no possible intermediate values of this 
variable – e.g. nothing that is, say, one-quarter of the way between which and that.  This 
is what is termed a nominal variable.  Such variables label particular categories that are 
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treated as qualitatively distinct from the other categories in the analysis.  Other linguistic 
variables which are usually treated as nominal are word order (a clitic might precede or 
follow a verb, but can't be any place else), deletion or non-deletion of a segment (there's 
no 'partial deletion'), grammatical categories such as person, number, gender, case (e.g. 
English nouns are either singular or plural; there is no number scale with intermediate 
values of 'partially plural'), etc.  Social variables may also be nominal: speaker's sex, 
nationality, L1 vs. L2 status, etc. are normally construed as nominal variables in which 
each possible value of the variable is a discrete, qualitatively different category, without 
intermediate values. 
 
However, it is clear that other variables that linguists work with do not have this nominal, 
discontinuous nature.  In the social domain for example, a speaker's age is an intrinsically 
continuous scale with an infinite variety of intermediate values. The same is true of 
income, years of schooling, length of residence in a particular country or dialect region, 
etc.  In the relativizer example cited above, the social variable of social class was 
instantiated by only two individuals, who could be thought of as constituting a nominal 
variable, but many sociolinguistic studies treat class as a continuum, with fuzzy, non-
discrete boundaries between the points on the class scale.  Often in such work social class 
or ('socioeconomic' class) is operationally defined in terms of some kind of quantified 
scale, such as the nine-point scale used by Labov in his path-breaking New York City 
study (1966). 
 
Among linguistic variables, the same is true.  Vowel articulations, for example, are 
notoriously continuous.  Although we phonemicize them, labeling particular articulations 
as tokens of the category /i/ and others as tokens of the category /I/, the articulatory and 
acoustic regions over which these vowel sounds are defined have no hard boundaries, and 
in the course of linguistic change, they are continuously deformed into each other; 
intermediate articulations are not only possible, but occur frequently.  Other phonetic/ 
phonological properties with this continuous character include pitch, stress, voice-onset 
time, etc.  Acquisition (both L1 and L2) is ordinarily thought of as a continuous variable, 
along which speakers could be infinitely differentiated. 
 
These variables which are not nominal are typically treated as quantifiable in some 
dimension: there is some trait which a given realization may have more or less of in a 
quantifiable way.  For age, a speaker has a given quantity of years and days of life; for 
vowels, a given articulation can be defined in terms of the formant frequencies that are 
produced, which vary continuously within a range of approximately 200-5000 Hz.  But it 
is worth noting additional distinctions among the non-nominal, quantitative variables.  
One important type with particular properties are the ordinal variables.  These are values 
that form a scale with a rank order – a weak quantification in which there is a particular 
directionality, so that transitivity obtains (if A>B and B>C, then A>C), but in which there 
is no defined sense of the distance between any points on the scale.  Such a variable can 
be contrasted with interval or continuous variables in which the separation between 
given points has a measurable definition.  These two types can be contrasted by 
considering the results of an Olympic marathon.  The order in which the contestants 
finish is an ordinal scale: the first place finisher gets the gold, second place silver, and so 
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on.  But this doesn't tell us how much time or distance separated each finisher; the gold-
medal winner might have been just a half step in front of the silver medallist, who in turn 
could have been 500 meters in front of the third-place finisher.  Providing this additional 
information requires an interval scale, for example a list of the times that each contestant 
took to run the race.  In linguistics, a currently well-known example of an ordinal scale is 
the constraint hierarchy of Optimality Theory.  In its orthodox version, this is purely 
ordinal: we can state that constraints X, Y, and Z are ranked in that order, but the theory 
makes no provision for concepts like X being just a little bit higher than Y, but Z falling 
way behind. 
 
It should be noted that in analytical practice, it is often possible to choose whether to treat 
a given variable as discrete or continuous.  Thus speaker's age could be treated as a 
continuous variable, or the age continuum can be segmented into groups, such as 
adolescent, younger adult, older adult, which effectively makes it a nominal variable.  
The same is true of linguistic variables.  For example, studies of lax vowel lowering in 
Canadian English such as De Decker & Mackenzie 2000 and Hoffman 1998 classified 
tokens of /I/ and /E/ auditorily as either lowered or not, a binary, nominal variable.  But 
vowel height is, of course, a continuous function of the vowel's first formant.  
Accordingly, De Decker 2002 treats the same phenomenon using normalized acoustic 
measurements of F1 and F2.  
 
2.3. Central tendencies.  What are the statistical consequences of these distinctions?  
Particular statistical methods are associated with particular types of variables.  For 
example, consider the common statistical techniques for identifying a 'central tendency' – 
a value which attempts to characterize some kind of 'center' in a collection of data.  The 
best known such measure is the mean or arithmetic average. The mean is a statistic that 
is only relevant for quantitative scales (normally interval or continuous scales, although it 
is occasionally used with ordinal variables).  Thus if we had a group of speakers, we 
could calculate their average age or average income, and if we had a set of productions of 
the vowel /i/, we could calculate average F1 and F2 values.  The procedure is to sum all 
the values and divide by the number of cases. In the relativizer example above, we can 
calculate the mean percentage of wh- forms for the two speakers (41% giving each 
speaker equal weight, or 55% if we weight them by data quantity).  But what we cannot 
do in that example is calculate the average relative pronoun used by each speaker.  There 
is no 'average' of which, that, and Ø forms.  Neither could we calculate the average sex or 
nationality of a sample of speakers, nor the average grammatical case of a collection of 
pronouns.  These are nominal variables, and the mean is undefined for such cases 
(although one occasionally finds it used metaphorically, such as in statements like "the 
average nursing home resident in the United States is a white female").   
 
A mean measures the 'center' of a set of scalar values in the sense that it constitutes the 
number which differs from all the values in the set by the same total amount in both 
positive and negative directions.  In other words, the difference between the mean and all 
the values higher than it totals up to the same amount as the difference between the mean 
and all the values smaller than it.  This is a very common measure of central tendency 
which everyone is familiar with in everyday life.  But it has a well-recognized defect for 
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certain kinds of distributions: it is powerfully affected by extreme values.  Thus if ten 
speakers in a sample used some variable at a rate of 1%, while one other speaker used it a 
a rate of 100%, the average percentage of usage would be 110/11 = 10% (assuming all 
speakers were observed the same number of times.)  What does this number mean?  It is 
likely that the one speaker who uses this form all the time is anomalous, an 'outlier' in the 
graphical sense, so if we ignored him or her as atypical, the rest of the group would have 
an obvious central tendency of 1% usage.  The mean figure of 10% doesn't characterize 
anyone in the sample; in fact, it doesn't even come close to any observed value.  
Therefore, we might wish for an alternative measurement of central tendency that avoids 
such a distorted outcome.  One measure that achieves this is the median.  It can be used 
for any quantitative variable, and consists of simply the middle value in a list of values 
ordered by size.  When there is an odd number of cases, it is the middle case (e.g. the 
third value in a list of 5, or the 6th value in a list of 11 items), while with an even number 
of cases the median is the average of the two middle-most values (e.g. the third and 
fourth in a list of 6).  In the example just given, it would be 1%, because counting from 
the lowest to the highest rates of use of the variable, the 6th speaker would use 1%, (as 
would the first through tenth speakers).   
 
Such measurements can describe the central tendency of a set of quantitative variables, 
whether interval, ordinal, or continuous.  Is there any way to describe the central 
tendency of a set of observations of a nominal variable?  One useful device in such 
situations is the mode.  This is quite simple: it is just the value that occurs most 
frequently.  If we were looking at pronoun cases in a text, and observed 85 pronouns in 
the nominative case (he, I, we, etc.), 47 in the accusative (him, me, us), and 16 genitive 
(his, mine, ours), then the modal case would be the nominative, as there are more items 
marked with this case than any other.  This is what is really meant when people make 
statements about the "average" value of a nominal variable: "the average nursing home 
resident is a white female" really means "the modal nursing home resident is a white 
female", i.e. there are more white females than white males or non-white males or 
females living in nursing homes. 
 
Note that, although the mode is the only central tendency measure that can be 
meaningfully used with nominal scales, it is also useful in some circumstances for 
analyzing interval or ordinal scales.  A set of measurements of the F1 of the nucleus of 
the vowel /æ/ might find, in an /æ/-raising dialect like Chicago, that there were more 
tokens at 450 Hz than any other frequency, and this would be a valid measure of one kind 
of central tendency.  The same study could easily find a median value of, say, 475 Hz, 
and a mean value of 500 Hz, and all three of these measures would be valid descriptions 
of different kinds of central tendency.  Furthermore, it is possible to find more than one 
mode, if there are several clusters of data points at different values.  This is in itself an 
important finding about a data set which is obscured by the median or mean, which 
always yield just a single value, even if the data are distributed like the weights on a 
barbell.      
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3. Statistical inference: the significance of significance 
 
The discussion so far has dealt with what are known as descriptive statistics, which are 
ways of describing the forest as a whole, based on information about the trees within it.  
But there are other things that the analyst would like to be able to do with quantitative 
analysis, like making informed decisions based on a knowledge of the odds, the way a 
poker player knows not to draw to an inside straight.  When we have only partial 
information rather than complete, omniscient knowledge of a situation (which is normally 
the case), we would like to be able to extrapolate from the part to the whole in a 
reasonable way.  Statistical methods for doing these sorts of things are called 'inferential 
statistics'.  A central concept in this field is that of statistical significance, a much 
misunderstood term. 
 
Statistical significance is essentially a way of estimating how likely it is to get a given 
distribution of data given certain assumptions about the nature of the source from which 
the data are drawn.  In scientific studies, the available data are almost always a subset of 
the total possible data set, in other words, a sample drawn from a 'universe'.  Thus a study 
of relative pronoun choice in English cannot possibly hope to investigate all the relative 
pronouns uttered by English speakers, nor can a study of the variable realizations of coda  
/-s/ in Spanish study all the times that Spanish speakers utter this sound in this syllabic 
position.  Therefore, we investigate a sample, and seek to draw inferences about the 
statistical patterning of the universe from this sample.  A sample, of course, can easily 
deviate from the universe in various ways.  For example, we know from studying coins 
that they should have a 50% chance of coming up heads when flipped, and in a very large 
sample of coin flips, the observed percentage of heads should converge on 50%.  But if 
we flip a coin twice, do we necessarily expect one head and one tail?  Clearly not.  
Indeed, we might not even be surprised to get 4 or 5 heads in a row, because in a universe 
where heads were randomly but evenly balanced with tails, 5 consecutive heads should 
occur once every thirty-two (25) trials.  But if we flipped a coin 200 times, and got heads 
every time, we would begin to wonder whether the universe from which those flips were 
drawn really did have an equal likelihood for heads and tails, because the chance of 200 
consecutive heads would be equal to 1 in 2200, a number so small as to render our starting 
assumption highly unlikely.  Consequently, we might begin to entertain alternative 
assumptions, such as that the coin in question has heads on both sides! 
 
Statistical tests of significance work in this way; they provide standard reference values 
which can be tested against known distributions to evaluate the likelihood that the 
observed data come from such a distribution.  They are most commonly phrased with 
reference to the "null hypothesis", which always states that nothing is going on, the 
source distribution is normal, the independent variables do not influence the dependent 
variables, etc.  In the case of coin flips, it would state that neither heads nor tails is more 
likely to occur.  The ultimate significance statistic is usually stated in terms of the 
probability that the null hypothesis is true; this value is conventionally represented as p.  
If this number is small, meaning that the null hypothesis is very unlikely, then the results 
are said to be "statistically significant", meaning that it is reasonable to entertain some 
other hypothesis about the nature of the universe.  "Small", in this context is generally 
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taken to mean a value less than .05 or .01; in other words, if there is less than a 5% or 1% 
chance that the data are drawn from a universe in which the null hypothesis is true, this 
means that there is a 95% or 99% chance that the source universe really has a different 
distribution of the data, such as a real and significant effect of some independent variable 
on your dependent variable. 
 
Consider a sociolinguistic example.  Cedergren & Sankoff (1974) report that in Montreal 
French, the complementizer que  is variably deleted: sometimes it is present and 
sometimes absent.  Furthermore, in a set of sociolinguistic interviews with 16 speakers, 
the rate of absence appeared to be correlated to the social status of the speaker.  Some 
figures are given in Table 1.   
 
Table 1. Complementizer que in Montreal French2 (from Cedergren & Sankoff 1974) 
 
       Que absent     Que present  % absent 
Working Class   28    90       23.7% 
Professional Class    3  130         2.3% 
 
 
The overall percentage of que-absence is appreciably higher for the working class 
speakers.  But can we infer that this is true of the universe?  If it were possible to study 
all utterances containing complementizer que by all speakers of Montreal French, then 
we could answer this question definitively; but since that is not possible, we can only 
draw inferences from the data that we do have.  What inference is reasonable?   
 
The null hypothesis, in this case, would state that, no, class DOESN'T have anything to 
do with use of que by Quebecois(e).  Opposed to this would be the "experimental 
hypothesis", stating that yes, it does.  Given the data in Table 1, either hypothesis is 
possible.  The higher rate of que presence among professional class speakers might be 
due to simple sampling error: we merely happened by chance to encounter more 
utterances with retained que among the professional class speakers who were interviewed 
for the study, and if we had recorded them longer, or added other speakers, the apparent 
class difference would disappear.  So we wish to move beyond statements of what is 
possible to statements about what is likely, and this is what statistical significance 
permits.  We can compare the distribution in the sample with known facts about the 
distribution of samples drawn from populations in which the null hypothesis is true, and 
make a statement about whether the null hypothesis is likely to be true about the universe 
(i.e. Montreal French) from which these tokens of complementizer que were drawn. 
 
3.1. Chi-square.  One useful procedure for doing this is called the chi-square test.  We 
begin this test by arranging the data in a contingency table, as in Figure 2, where each 
possible combination of 'contingencies' is given a separate cell.  In our case, that means 
one square for each of the combinations of: utterances with que present produced by 
working class speakers, those produced by professional class speakers, and then 
utterances with que absent produced by working class speakers, and que-absent tokens 
produced by middle class speakers.  In this table there are two variables, que realization 
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and social class of speaker.  Each has two possible values, giving a two-by-two 
contingency table, which is the four-cell core of Table  2.  Note that we might assume 
that class is the independent variable, but this has no bearing on the procedure for 
calculating the chi-square statistic. 
 
Table 2. Contingency table for Montreal French example 
 
       Que absent     Que present   Totals   
Working Class   28    90    118   
Professional Class    3  130    133   
 
Totals    31  220   251 
 
  
Also given in Table 2 are the 'marginal totals' for the contingency table – the totals in 
each row and in each column, and the grand total.  This is a preliminary requirement for 
calculating chi-square.  The marginal totals represent the total number of items found for 
each value of each variable: i.e. all tokens collected from professional class speakers (in 
this example, there were 133), all tokens collected from working class speakers (118), all 
cases of absent que, regardless of who said them (31 tokens) and all cases where que was 
present (220).  The grand total is the total  N for the entire corpus, in this case,  251.   
 
The marginal totals are required for the chi-square test because the logic of the test 
involves considering other ways that the same data might have been distributed across the 
cells, while preserving the same marginal totals.  One way to see how this works is to 
consider a hypothetical case of some sociolinguistic variable with two possible 
realizations, A or B, which is examined in speakers belonging to two age groups, older 
and younger. Suppose that we collected one hundred tokens from each of the two age 
groups, and found that they were evenly divided between variants A and B. We would set 
up a contingency table as in 3.1, with marginal totals of 100 in each row and column, and 
a grand total of 200.  Now, what distributions of items in the cells would preserve the row 
and column totals, and what conclusions would they suggest about any possible 
relationship between speakers age and the use of this variable?  If it were the case that 
each cell had 50 tokens, as in Table 3.2 we would probably conclude that there was no 
association between age and this variable.  This, in fact, is the distribution that the null 
hypothesis predicts.  But in Table 3.3 we see another extreme: there are 100 tokens in the 
two cells on one diagonal, and zero in the other two.  This preserves the same marginal 
totals, but shows a categorical association: older speakers use only variant A, while 
younger speakers use only variant B.  Encountering such a distribution, most linguists 
would conclude that there is a rapid change in this community, with B supplanting A in 
apparent time.  This would involve the rejection of the null hypothesis.  Note that in both 
of these tables, the marginal totals are the same, even though they lead us to opposite 
conclusions.  Consequently, in constructing a statistical test, we take those values as 
given; in this case, we could say they are determined by the size of the sample (exactly 
100 tokens were collected from each age group) and by the overall rate of use of the 
variants in the community (which is 50% usage of each variant).       
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Table 3. Examples of contingency tables showing different degrees of association 
between speaker's age and a linguistic variable 
 

3.1 Marginal totals 
  A B Total 
Younger   100 
Older    100 
Total  100 100 200 
 
 

3.2 No association    3.3 Categorical association 
  A B Total    A B Total 
Younger 50 50 100  Younger 0 100 100 
Older  50 50 100  Older  100 0 100 
Total  100 100 200  Total  100 100 200 
 X2=0, p=1     X2=800, p=0 
 

3.4 Slight association    3.5 Strong association 
  A B Total    A B Total 
Younger 45 55 100  Younger 30 70 100 
Older  55 45 100  Older  70 30 100 
Total  100 100 200  Total  100 100 200 
 X2=2, p>.20     X2=32, p<.001 
 
 
Now in real data, one rarely runs into such extreme cases.  More commonly we will 
encounter intermediate cases, like 3.4 and 3.5.  Table 3.4 is only slightly different from 
the null hypothesis case, while 3.5 goes robustly in the direction of a strong but non-
categorical association between age and usage. The task we wish our statistical test to 
address is, in a sense, to quantify where a given observed distribution falls on the 
continuum of possible distributions between the two extremes illustrated by 3.2 and 3.3.  
The question is phrased in terms of how likely it is to get whatever distribution we 
observe from a universe in which the data are distributed in a way analogous to 3.2.  If 
that is highly unlikely, we will tend to conclude that the universe is not so constructed; in 
this example, we would conclude that there is a significant association between age and 
usage, perhaps because of ongoing linguistic change in the community.   
 
The chi-square figures given for tables 3.2-3.5 illustrate how this statistic fulfills this task.  
For the data quantity and marginal totals given in the example, chi-square values range 
from a low of zero for the case showing no association between the variables (3.2), to a 
high of 800 for the case showing categorical association (3.3).  At these extremes, the p 
value – the probability that the null hypothesis is true – approaches 1 when chi-square is 
0, and approaches 0 when chi-square is very large (in this case, 800).  But the statistic 
really does its job in the middle ranges.  Table 3.4 gives a chi-square of 2, corresponding 
to a p somewhat higher than .2.  This means that such a distribution could be drawn more 
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than 20 times in a 100 trials from a universe in which the data were actually distributed 
evenly across these two variables, like in Table 3.2.  Getting such a result, a researcher 
would ordinarily be unjustified in considering it as valid evidence for the existence of an 
age difference in this hypothetical community.  But the pattern in Table 3.5 is much less 
likely to be drawn randomly from a null-hypothesis universe.  The chi-square of 32 
corresponds to a p value of less than .001, meaning there is less than one chance in a 
thousand that the null hypothesis is true in this case.  (Actually, the chance is much less 
than this, more like one in 100,000.)  Given such results, we would be nearly certain that 
there was in fact a real association between age and the use of this variable.  Thus the chi-
square statistic gives us, in effect, a quantification of distributions along the continuum 
from the balanced, null hypothesis distribution to the categorically imbalanced 
distribution; using this quantification, we can draw informed inferences about the 
universe based on the sample.    
 
What, exactly, is the procedure for calculating chi-square?  Returning to the Montreal 
French example, we now need to calculate what the distribution would be if there were 
no association between class and que presence or absence, but the marginal totals 
remained the same.  This is equivalent to calculating the distribution where both social 
classes use the same percentage of que-deletion.  This is easily done.  The overall 
percentage of que-deletion is equal to 31 (total cases of deletion – the column total for the 
que-absent column) divided by the grand total of 251, which gives 12.35%.  We multiply 
this figure by the N for each social class (i.e. each row), and get the figures in Table 4.  
These are called the EXPECTED values for the table, in contrast with the OBSERVED 
values that appeared in Table 2.  This means 'expected if the null hypothesis were true', 
and each class had exactly 12.35% deletion.   
 
Table 4. Expected values for Montreal French example, under null hypothesis 
 
       Que absent      Que present  Totals   
Working Class           14.57          103.43    118   
Professional Class          16.43          116.57    133   
 
Totals    31  220    251 
 
The chi-square statistic is now going to be a function of the similarity or difference 
between the figures in Tables 2 and 4, between the observed and expected values.  We 
start by subtracting the one from the other: for each cell we compute (observed-
expected).  This will necessarily yield some positive and some negative numbers, and to 
obtain all positive numbers we square them (because the square of any real number is a 
positive value).  (This value, called the squared-difference is a common intermediate step 
in many statistical calculations.  Note that in a two-by-two table like this one, it is the 
same value for all four cells, which is a reflection of the fact that this table has only one 
degree of freedom, as we will discuss below.  In larger tables, this will not be the case.)  
Next, we need to make these values proportionate to a common reference point, so that 
cells with large N's don't contribute excessively to the statistic merely because they have 
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more data.  For this purpose we use the expected value in each cell, dividing the squared 
difference by the expected value.   
 
Table 5.  Chi-square calculations 
 
a. differences between observed and expected values (observed-expected) 
       Que absent      Que present      
Working Class           13.43          - 13.43    
Professional Class        - 13.43            13.43  
 
b. squared difference = (±13.43)2 = 180.36 
 
c. chi-square computation for each cell:   (obs-exp)2/exp    
         Que absent              Que present   
Working Class  180.36/14.57=12.38  180.36/103.43=1.74    
Professional Class 180.36/16.43=10.98             180.36/116.57=1.55  
 
 Total chi-square across all cells = 12.38+10.98+1.74+1.55=26.65 
 
The result of these calculations is the chi-square statistic for each cell.  We sum all the 
values for all the cells, and obtain a total chi-square for the entire table.  In other words, 
the figure is computed as  Σ (observed-expected)2/expected.  This number will increase to 
the extent that any observed distribution diverges from a null hypothesis distribution.  In 
the Montreal example, the figure is 26.65.   
 
Now, it is possible to calculate for any given degree of divergence from a null 
distribution the probability of getting such a distribution by randomly sampling from a 
universe in which the null hypothesis is in fact true.  Statisticians have done these 
calculations, and compiled tables summarizing the distributions of the relevant statistics 
in such circumstances.  For present purposes, we are interested in the distribution of the 
chi-square statistic.  A fragment of such a table is reproduced below in Appendix 1.  Note 
several things about that table. In the body of the table are values of the chi-square 
statistic, and across the top are various specific percentage points, or decimal fractions.  
These are equivalent to the percentage of times in a large number of trials that one would 
expect to obtain a distribution which gave a certain chi-square value even though the 
universe from which those trials were obtained was governed by the null hypothesis.  
Note that as the chi-square value gets bigger, going from left to right in the table, the 
chance of finding such a distribution in a null-hypothesis universe gets smaller and 
smaller.  The specific figure for these 'chances' are what we call the p-values, the 
significance statistic.    
   
In our example, we are effectively asking what is the chance of getting the figures in 
Table 2 by sampling from a universe in which class and que deletion had no systematic 
relationship. This will be the significance, or p-value, of Table 2.  We computed the chi-
square figure of 26.65 for the table.  What is the corresponding value of p?  
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To answer this, we must consider which row of the table to search in.  These rows 
correspond to varying 'degrees of freedom' in the data.  What are these?  There are 
several ways of thinking about this concept.  Basically it is a measure of the complexity 
of the data set or the analysis.  In this case we had a simple two-by-two contingency 
table: there were only two possible realizations of que, and only two social classes.  But 
what would we do if there were four social classes investigated, and we were studying a 
variable that had three realizations, like the English relativizers with their alternation 
among wh-words, that, and zero?  In such a case the data would be more complex, and 
the table would have more cells, making for a bigger chi-square.  The degrees of freedom 
are a measure of this.  For contingency tables, it is computed by the formula (number of 
rows – 1) X (number of columns – 1).  In a two-by-two table, this means 1X1=1 degree 
of freedom, but for four classes and three relativizers, it would be (4-1)X(3-1)=3X2=6.   
 
Accordingly, for the Montreal que data, we look in the first row of the table.  The chi-
square calculated is greater than the rightmost value given in the first row; this means that 
the corresponding value of p is less than .001. In other words, if we drew data randomly 
from a universe in which the null hypothesis is true, such a chi-square value would be 
obtained less than one time in a thousand.  Hence, we would report this as a significant 
result.  Since there is an extremely small chance that the null hypothesis is true of class 
and que-deletion in Montreal, we conclude in favor of the alternative, namely that class IS 
in fact associated with the rate of use of this linguistic variable. 
 
Two points should be noted about this procedure.  First, if the chi-square value obtained 
falls within the range found in the table, we search for the value in the table that is closest 
to but still smaller than the one we obtained.  Thus if we had calculated a figure of 5.5 for 
some table with one degree of freedom, this value would fall between the fourth and fifth 
columns of row 1: it is greater than 3.84, but less than 6.64.  Therefore the closest smaller 
value is 3.84, and hence we would report the significance – the p value – as p<.05 (recall 
that as we proceed from left-to-right across the table, the chi-square values increase but 
the p values decrease).  Second, it should be emphasized that the chi-square test does not 
tell us anything about the DIRECTION of a significant association.  In this case, the 
direction is that the professional class speakers retain que more often and the working 
class speakers delete it.  But if the direction of association had been the opposite, and the 
figures in Table 2 were exactly the reverse (so that the professional class speakers had 
used 30 absent and 90 present tokens, and the working class had the 3 absent and 130 
present), the chi-square statistic would be unchanged.  Hence, with chi-square, the 
statistic tells us only if the association between the variables is significant, while the 
nature of the association must be determined by inspection of the original values.      
 
Now, given that the p-value falls on a continuum, at what point do we conclude that some 
finding is significant?  The normal practice in statistical work is to set some 'criterial 
value' for significance, such as .05 or .01, which means rejecting the null hypothesis 
when it has less than one chance in twenty (p<.05) or one chance in a hundred (p<.01) of 
being true.  In social science research, p<.05 is the most commonly accepted criterial 
value (and this is the default criterion for significance in Varbrul programs like Goldvarb 
and MacVarb). Why choose .05 as our criterial value?  A five percent chance of the null 
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hypothesis being true is a pretty small chance.  Why not say a significant result was 
found when p<.10 or .25?  Why not conclude in favor of the experimental hypothesis any 
time p<.50 – which gives a less than 50-50 chance of the validity of the null hypothesis?  
The answer is that .05 is merely a convention – a fairly widespread convention in social 
sciences and other fields, but a convention nonetheless.  The choice of a criterion really 
depends on what one wishes to do with the information.  Anything better than a 50-50 
chance might be enough to win money gambling, in the long run, but the only cost of 
being wrong is some money.  But what if the stakes were higher?  Imagine a case where 
clinical trials of a new drug reveal that the death rate in the population that took the drug, 
although higher than in the control population, is associated with a p=.60.  In other 
words, the difference between the two populations has a 60% chance of being random, 
leaving 'only' a 40% chance that taking it will raise your risk of dying.  Would you take 
such a medication? 
 
The consequences of drawing erroneous conclusions in linguistic research are unlikely to 
be either fatal or unprofitable, but the conclusions of a study are likely to enter the body 
of knowledge about a subject and inform future hypotheses, theories, and conclusions.  
Consequently, we would like to be fairly confident of their accuracy, and conservative 
about the conditions under which we reject the null hypothesis.  The .05 figure is 
therefore a reasonable value to adopt as our cutoff for significance.  But it is not a magic 
number.  When doing a study of something that for other reasons we strongly believe to 
be significant, if we get a result that is near but not beyond .05, like, say, .08 or .10, we 
might not abandon our interest in the phenomenon.  Instead, we might be better advised 
to investigate it further or collect more data.  On the other hand, if something appears in 
one study to be significant at the .04 level, say, and in several other studies to be highly 
insignificant, giving p values like .40 and .60, it is good to remember that the .04 result 
will be expected once in 25 trials, even when the null hypothesis is true!  This is 
particularly relevant in a study that does multiple significance tests.  If in the course of 
writing your dissertation, you have performed 30 or 40 chi-square tests using the .05 
criterion, it is likely that you have one or two 'false positives' among the results.   
 
 
3.2. T-test.  The chi-square test is defined for contingency tables: in other words, co-
occurrence relations among nominal variables.  For interval or continuous variables, 
other types of tests of significance must be used.  A full treatment of these may be found 
in statistical textbooks; for our purposes here I will illustrate the issue with one common 
and useful approach, called the t-test.  This test is an inferential statistic that is used to 
compare the means of two sets of quantitative variables (normally interval or continuous 
variables; for ordinals other tests are appropriate).  Thus if we wanted to compare two 
contexts for their effect on the formant values of some vowel – say, the effect of 
following nasal vs. non-nasal environments on the raising of English /æ/ – then we might 
measure a number of tokens in the two contexts and compare their mean F1 values using 
this test.  The test returns a p-value, which in this case will mean the probability of the 
two data sets being drawn by random sampling from the same distribution, or the 
probability that the independent variable that defines the two different sets has no effect 
on the measured value. 
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What measures would influence our estimates of this probability?  Before looking at the 
mathematics, let's consider the problem logically.  Clearly, if the two means we are 
comparing are close together, it is more likely that there is no significant difference 
between them, while if they are far apart, this should increase the significance of the 
results.  Accordingly, the t-test begins with a calculation of the difference between the 
means of the two populations.  But in addition, whether we consider the means to be 
'close together' or 'far apart' will depend in part on how clustered or dispersed the values 
in each set are.  If all the values in one set clustered closely around a mean value of, say, 
700 Hz, and all the values in the other set were grouped tightly around a mean of 600 Hz, 
we would be more inclined to think that the difference between them was significant than 
if the populations had wide dispersions which overlapped extensively but happened to 
have different means. 
 
A good measure of how clustered or dispersed the values of a quantitative variable are is 
a number called the variance, which is roughly the average of the squared differences 
between the mean and the individual values.  Specifically, it is calculated thusly: for all 
tokens of xi, xj, etc. in a set, total up the values of (xi- xmean)2, and divide this total by (n-
1), where n is the number of tokens in the sample.  Thus the variance is large when the 
numbers in the sample are widely spread out, and small when they are close together, 
independent of the mean.  Another commonly used measure of clustering in a distribution 
is called the standard deviation; this is simply the square root of the variance.   
Mathematically, we can represent these values by the following expressions.  The sum of 
the squared differences is3: 
 (xi − x ∑ )2  
and the variance is  

 
(xi − x )2∑
n − 1

 

and the standard deviation is: 

 
(xi − x )2∑
n −1

 

 
To illustrate this, consider two hypothetical sets of measurements of the F1 of some 
vowel: in one context, the measurements are 400, 500, 600 Hz, and in the other they are 
490, 500, 510.  Both sets have a mean of 500 Hz, but the first is loosely distributed 
around this mean while the second is tightly clustered.  The variances illustrate this: for 
the first set it is (1002 + 02 + 1002)/3-1 = 10,000, while for the second it is (102 + 02 + 
102)/3-1 =  100.  The associated standard deviations are 100 and 10 respectively; (in this 
simple case, these are the amounts by which the two extreme values diverge from the 
middle, mean value). 
 
So, in the variance and/or the standard deviation we have measures that we can use to 
adjust the difference between the means of the sample populations in order to provide our 
scale of clustering or dispersion.  We do this by dividing the difference between the 
means by a figure which approximates an average standard deviation adjusted for sample 
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size.  The precise formula for this denominator is the square root of the sum of the 
variance divided by n1 and the variance divided by n2; in other words (where s is the 
standard deviation), the denominator is: 
 

 
s 2

n1
+
s 2

n2
 

 
and the full formula for the test statistic t is: 
 
 t =

x 1 − x 2
s2

n1
+

s2

n2

 

 
One complication that arises is that the two populations ordinarily have two different 
variances and two different standard deviations, while the test assumes that they have the 
same standard deviation.  Therefore, the values of variance and standard deviation that 
are observed for the two samples are treated as separate estimates of the assumed 
common values, and are combined to produce a sort of weighted average variance and 
standard deviation, as if the two populations were one.  The formula for this is the sum of 
the squared differences for population one plus the sum of the squared differences for 
population two divided by n1 plus n2 minus  2, i.e. (where s.s.d. represents ‘sum of 
squared deviations’): 
 

 s = s.s.d.1 + s.s.d .2
n1 + n2 − 2

 

This yields the value of s which is to be plugged into the t-test formula above.  (Note that 
if you have at hand the variance or the standard deviation for the populations, you can use 
these to work backwards to the sum of squared deviations.  The s.s.d. for a population 
with standard deviation s is equal to (n-1)s2.) 
 
Now let us apply these formulae to an example.  Returning to the /æ/ raising example, 
suppose we had the following sets of measurements of F1 in pre-nasal and pre-oral 
contexts. 
 
 following [-nasal] consonant             following [+nasal] consonant  
   
636, 683, 691, 700, 705, 707, 710, 722, 755         597, 610, 612, 627, 644, 650, 666, 669, 

672, 678, 703  
 
sum of squared differences = 8059           sum of squared differences = 10488 
n = 9, mean = 701, variance = 1007.4,           n = 11, mean = 648, variance = 1048.8 
 standard deviation = 31.7     standard deviation = 32.4 
 
combined variance and standard deviation for both populations 



  Guy  - 19 - 

 
 combined variance:   8059 + 10488 / 9 + 11 – 2 = 1030.4  
 combined standard deviation: square root of 1030.4 = 32.1 
 
difference in means (numerator of t-test) = 701-648 = 53 
 
denominator of t-test:  square root of ( 1030.4/9 + 1030.4/11)  
   = square root of (114.5 + 93.7) 
   = 14.43 
 
t = 53/14.43 = 3.67 
 
Again, we must compare this result with a table of the known distribution of values of the 
t statistic for random samples drawn from a population in which the null hypothesis is 
true.  A fragment of such a table is given in Appendix 2.  Here, the degrees of freedom 
are calculated as n1+n2 – 2, which in our example amounts to 9+11-2=18.  Since 18 falls 
between the rows for 15 and 20 d.f., we look across these two rows, and find that our 
result is closest to the values in the column for p = .002.  It is greater than the t-value of 
3.55 corresponding to p=.002 for 20 degrees of freedom, but less than the 3.73 at 15 d.f.  
The value for 18 d.f. is somewhere in between these two, and therefore will be fairly 
close to our figure of 3.67.  Hence the p-value for our result is close to .002, and certainly 
less than .01 or even .005.  This means that there are approximately two chances in one 
thousand that such results could come from a universe in which following nasal and non-
nasal consonants had identical effects on the raising of /æ/, and that our two sets of 
measurements are really equivalent. If we were using a .05 or .01 criterion, we would 
report the difference in means as statistically significant, and conclude that the F1 of /æ/ 
is indeed influenced by whether the following context is nasal or not. 
 
Note that in this case, the difference in standard deviations (just 0.7) between the two 
populations was small compared to the difference in means (53), so the step that we took 
to obtain an averaged standard deviation and variance had little effect on the outcome.  
Had we merely used one or the other of the unadjusted variances, the t statistic would 
have been computed to be either 3.64 or 3.72, which would have yielded essentially the 
same estimate of p.  But where the differences in standard deviations and variances 
between the samples is large, this will not be the case, and the validity of the test might 
be called into question.       
 
               
4. Correlations 
 
Of the tests that we have considered so far, the chi-square test looked at relations between 
two nominal variables, while the t-test is used in the analysis of a quantitative dependent 
variable and a nominal independent variable.  What do we do if we have two quantitative 
variables?  This issue arises frequently in sociolinguistic research.  For example, studies 
of change in progress often wish to investigate the relationship between age and 
frequency of use of a possibly innovative form, and studies of social stratification may 
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wish to analyze a quantitative measure of some linguistic variable in terms of a 
quantified, scalar model of social class.  The appropriate statistical approach in such 
cases is to look at a measure of correlation.  Correlation is a measure of the extent to 
which the value of one variable covaries with or predicts the value of the other.  For 
example, among children, age and various measures of language acquisition (such as 
vocabulary size, and mean length of utterance) will tend to increase together: older 
children know more words, and produce longer sentences.  Hence there is a positive 
correlation, and we might be able to derive a mathematical relationship, so that knowing 
a child's age would allow us to predict with some degree of accuracy some quantitative 
measures of acquisition. 
 
Other types of correlation are also possible.  One is a negative correlation, where one 
number goes down as the other goes up.  This would be the case, for example, in a 
linguistic change, if we looked at measures of age and use of some innovation: as age of 
speaker increases, the use of the innovation decreases.  And finally, we may encounter 
cases where there is no correlation at all: one number does not predict or imply anything 
about the value of the other.  This absence of a correlation would obtain between 
measures like the F2 frequency of a vowel and the lexical frequency of the word 
containing it: all vowel phonemes, both front and back (with both high and low F2s) 
occur in both high and low frequency lexical items.  
 
How can we express such relationships statistically?  If the two quantitative measures 
exhibit some degree of positive or negative correlation, then it is in principle possible to 
derive some mathematical function that relates them: one is a multiple or a fraction or a 
power of the other, or differs from the other by some constant amount, or is a negative 
multiple of the other, etc.  Many such functions are possible, and looking at a given data 
set we may not have any a priori  expectation about what exactly that function is, so the 
best strategy is usually to start with the simplest relationship, and look for a linear 
function.  If we label our two variables x and y, the general abstract form of a linear 
relationship is:  
 

1. y=ax + c 
 
Now, from our experience of the world, it is clear that variables can show a general 
tendency to correlate without being very precise or exact.  There are usually other 
variables that affect the precise values of the measures we look at.  During childhood and 
adolescence, for example, age and height are correlated: everybody gets taller as they get 
older, which is why we talk about "growing up".  But it is hardly a perfect correlation: 
neither of these numbers is a perfect predictor of the other.  One's height at age 3 should 
be greater than age 2, but it also depends on genetics, nutrition, health or disease, etc.  So 
if our data set consisted only of speakers' age and height, an equation like "height equals 
some coefficient times age plus some constant" will not be exact, although it will be 
roughly correct.  Hence what we need is some measure of how 'rough' or 'exact' the 
hypothesized linear function is for a given data set.  The statistic that does this is known 
as the coefficient of correlation (technically "Pearson's product-moment coefficient of 
linear correlation"), and is represented as r.   
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The mathematics for calculating r will not be addressed here; interested readers are 
referred to statistical texts such as Woods, Fletcher & Hughes 1986.  In any case, it is a 
tedious computation to do by hand; as a practical matter, most users will prefer to have 
this statistic computed for them by a statistical program package like SPSS, or by the 
statistical functions in a spreadsheet like Excel.  Rather, I will focus here on its properties 
and interpretation.  Basically, r measures how well a linear function captures the 
relationship between the two variables.  It ranges in value between –1 and +1.  An r of +1 
describes a perfect linear correlation.  Given an equation like (1) above, the value of y 
would for all data points be precisely equal to ax + c, and the coefficient a would be a 
positive number, so that both x and y increase together.  An r of –1 means the same thing, 
except that the relationship is inverse, and a is a negative number, so that y goes down 
when x goes up.  An r-value of 0 means there is no discernible linear correlation between 
the two measures.  Both occur over a range of values, but knowing the value of one does 
not help to predict the value of the other (at least, as a linear function; an r of 0 does not 
rule out the possibility of certain non-linear mathematical relationships between the 
variables).   
 
Most of the time, of course, we will be dealing with r-values that are neither –1, 0, nor 
+1.  How do we interpret these?  Essentially they are measures of how precise or how 
weak the correlation is.  A number close to ±1 means a strong correlation; r values of .5, 
or .6, or  -.5 or -.6 are usually considered reasonably good correlations, and r values in the 
neighborhood of ±.7 or ±.8 are very strong correlations.  But values close to 0 indicate 
the absence of a relationship between the variables: .1 or .2 is nothing to get excited 
about. The mathematical definition of r depends on the variance in the sample as a 
function of the linear relationship.  If the data points were plotted on a graph, and the 
linear equation defines a straight line drawn through that plot, how close to the line do the 
data points fall?  If they were all on the line, r would be equal to 1 or -1, while if they 
were all near the line but not necessarily on it, r would have an absolute value close to 1.  
Overall, r tends towards 0 as more and more of the points are farther and farther from the 
line.  In fact, there is a specific mathematical definition of this relationship: the square of 
r expresses the percentage of variance in the results of one value that are predicted by the 
other value.  Hence an r of .8 means that 64% (.82 = .64) of the variance in y is predicted 
by the value of x.   
 
As usual, the interpretation of the r-value depends on the amount of data available.  The 
minimum sample size for this statistic is 3, because it effectively involves seeing how 
close the points are to a straight line, and a perfectly straight line can be drawn to connect 
any two points, rendering the result vacuous.  Even with 3 or 4 or 5 data points, this 
statistic continues to be fairly unilluminating.  But with any sample size, the statistical 
significance of any r-value can be found by consulting statistical tables of the r 
distribution (not reproduced here, but available in any standard statistical reference text).  
As with the other tests discussed above, the result is to provide a value of p, which in this 
case will be an estimate of the likelihood that the sample is drawn from a universe in 
which there is no correlation between the two numerical variables under consideration.  
By way of illustration, an r of ±.6 is significant at the .05 level for a sample size of 11 or 
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greater, an r of ±.5 is significant at the .05 level for a sample of 16 or more, and an r of 
±.4 is significant at this level when there are more than about 25 data points in the 
sample.    

 
To take a real example of this statistic, consider Figure 1, from Guy & Boyd 1989.  This 
study examined rates of deletion of –t,d from final consonant clusters in English (where 
speakers will often say a phrase like wes' side with the /t/ deleted from west).  In one 
morphological category, namely irregular past tense forms like kept, left, told, the 
speakers in this study showed an inverse correlation between age and rate of deletion.  
The figure is a scattergram which plots all the speakers' factor weights for deletion in 
irregular past verbs against their respective ages; the points cluster roughly along a line 
declining from left to right (i.e. deletion rates decline from younger to older speakers).  
The line drawn in the diagram is a linear regression line that most closely captures this 
overall relationship.  The coefficient of linear correlation for this data set was reported in 
that study as r=-.72.  Given that there were 34 data points in the sample, this is significant 
well beyond the .001 level.          
 
<insert Figure 1 about here> 
  
 
 
5. Conclusions. 
This chapter has provided a necessarily brief introduction to some of the basic points 
about quantitative analysis.  The selection of topics is guided by the author's experience 
in what from this domain proves most useful, necessary, and illuminating for linguistic 
research.  Clearly this cannot pretend to be a complete treatment of a subject which is an 
entire discipline in its own right; for this the reader must consult a real statistician, take 
courses in statistics, or read a statistical textbook.  What I hope to have provided here is 
some useful background material for linguists who wish to conduct quantitative research, 
as well as a point of departure for readers of this book who will confront more advanced 
subjects in later chapters.   In short, the chapter may be seen as an attempt to write some 
words about the numbers which are written about words, in the pursuit of a deeper 
understanding of both of these symbolic systems.   
 
 
 
Notes 
 
1In fact, zero subject relatives do occur, especially in presentative or existential 
constructions like There's a guy (Ø) lives down the street from me.  However, these are 
much rarer than zero relatives in nonsubject position. 
2These are tokens occurring in postvocalic position.  Cedergren and Sankoff report a 
higher rate of deletion in post-consonantal position; those tokens are omitted here to 
simplify the example and eliminate another intervening variable. 
3The mean value of a population of quantitative values, represented in the text above as 
xmean, is indicated in these formulae by the conventional mathematical representation: x  
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Appendix 1. Partial chi-square distribution 
 
     p= 
Degrees 
of     .95   .50  .10  .05  .01 .001 
freedom  
1  .0039   .45 2.71 3.84 6.64 10.8 
2  .103  1.39 4.61 5.99 9.21 13.8 
5  1.15  4.35 9.24 11.1 15.1 20.5 
10  3.94  9.34 16.0 18.3 23.2 29.6 
 
 
 
 
 
Appendix 2. Partial t-distribution 
 
     p= 
Degrees 
of     .50  .10  .05  .01 .002 .001 
freedom  
1   1.00 6.31 12.7 63.7 318 637 
2     .82 2.92 4.30 9.92 22.3 31.6 
5     .73 2.02 2.57 4.03 5.89 6.87 
10     .70 1.81 2.23 3.17 4.14 4.59 
15     .69 1.75 2.13 2.95 3.73 4.07 
20     .69 1.72 2.09 2.85 3.55 3.85 
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